Integral representation of the n-th derivative in de Branges-Rovnyak spaces and the norm convergence of its reproducing kernel
نویسندگان
چکیده
— In this paper, we give an integral representation for the boundary values of derivatives of functions of the de Branges–Rovnyak spaces H(b), where b is in the unit ball of H∞(C+). In particular, we generalize a result of Ahern–Clark obtained for functions of the model spaces Kb, where b is an inner function. Using hypergeometric series, we obtain a nontrivial formula of combinatorics for sums of binomial coefficients. Then we apply this formula to show the norm convergence of reproducing kernel kb ω,n of evaluation of the n-th derivative of elements of H(b) at the point ω as it tends radially to a point of the real axis. Résumé. — Dans cet article, nous donnons une formule intégrale pour la valeur au bord des dérivées des fonctions de l’espace de de Branges-Rovnyak H(b), où b est une fonction dans la boule unité de H∞(C+). En particulier, nous généralisons un résultat d’Ahern-Clark obtenu pour les fonctions de l’espace modèle Kb, où b est une fonction intérieure. En utilisant les séries hypergéométriques, nous obtenons une formule non-triviale de combinatoire concernant la somme de coefficients binômiaux. Puis, nous appliquons cette formule pour démontrer que le noyau reproduisant kb ω,n, correspondant à l’évaluation de la dérivée n-ième des fonctions de H(b) au point ω, converge en norme lorsque ω tend radialement vers un point de l’axe réel.
منابع مشابه
Reproducing Kernels, De Branges-rovnyak Spaces, and Norms of Weighted Composition Operators
SPACES, AND NORMS OF WEIGHTED COMPOSITION OPERATORS MICHAEL T. JURY Abstract. We prove that the norm of a weighted composition operator on the Hardy space H2 of the disk is controlled by the norm of the weight function in the de Branges-Rovnyak space associated to the symbol of the composition operator. As a corollary we obtain a new proof of the boundedness of composition operators on H2, and ...
متن کاملWeighted Norm Inequalities for De Branges-rovnyak Spaces and Their Applications
Let H(b) denote the de Branges–Rovnyak space associated with a function b in the unit ball of H∞(C+). We study the boundary behavior of the derivatives of functions in H(b) and obtain weighted norm estimates of the form ‖f ‖L2(μ) ≤ C‖f‖H(b), where f ∈ H(b) and μ is a Carleson-type measure on C+ ∪ R. We provide several applications of these inequalities. We apply them to obtain embedding theorem...
متن کاملSchur-class Multipliers on the Fock Space: De Branges-rovnyak Reproducing Kernel Spaces and Transfer-function Realizations
We introduce and study a Fock-space noncommutative analogue of reproducing kernel Hilbert spaces of de Branges-Rovnyak type. Results include: use of the de Branges-Rovnyak space H(KS) as the state space for the unique (up to unitary equivalence) observable, coisometric transfer-function realization of the Schur-class multiplier S, realization-theoretic characterization of inner Schur-class mult...
متن کاملA Note on Solving Prandtl's Integro-Differential Equation
A simple method for solving Prandtl's integro-differential equation is proposed based on a new reproducing kernel space. Using a transformation and modifying the traditional reproducing kernel method, the singular term is removed and the analytical representation of the exact solution is obtained in the form of series in the new reproducing kernel space. Compared with known investigations, its ...
متن کاملA New Approach for Solving Volterra Integral Equations Using The Reproducing Kernel Method
This paper is concerned with a technique for solving Volterra integral equations in the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernel method, the Gram-Schmidt process is omitted here and satisfactory results are obtained.The analytical solution is represented in the form of series.An iterative method is given to obtain the approximate solution.The conver...
متن کامل